VDE - Mittelspannungskabel
10 kV - 30 kV

Mit einer starken Ausrichtung auf den Export und einem Fokus auf der Entwicklung von höherwertigen Produkten, wie Hochspannungs- und Höchstspannungskabeln, sowie Seekabeln, tätigt die Gruppe bedeutende Investitionen, um ihr Produktportfolio zu erweitern, und ihr Nachhaltigkeitsprofil zu verbessern. Für die Herstellung von Hochspannungsseekabeln im Werk Fulgor hat das Unternehmen einen Investitionsplan mit einem Wert von ca. 60 Millionen Euro realisiert.

Das breite Produktspektrum des Unternehmens, das international unter der Handelsmarke Cablel vertrieben wird, beinhaltet Energiekabel mit PVC-, EPR- und VPE- Isolierung (bis zu 500 kV), Seekabel, halogenfreie und brandhemmende Kabel, Telekommunikations-, Signal- und Datenkabel mit Kupferleitern oder aus Glasfaser, sowie brandhemmende, halogenfreie Kunststoff- und Elastomerkomponenten und Lackdrähte. Die Drähte und Kabel entsprechen einer Vielzahl internationaler Normen, wie VDE, CEI, ICEA, NF, SEN, BS, UL, NEMA, JIS, ASTM, DIN und ELOT. Viele der Produkte des Unternehmens verfügen über Zertifizierungen von BASEC, VDE, IMQ, NF-USE, NETWORK RAIL, KEMA.DNV und UL.

Alle Lackdrähte von Cablel sind gemäß der Norm IEC 60317¬0-1 produziert und getestet; auf Wunsch des Kunden richten wir uns jedoch auch nach jeder anderen anerkannten Norm.

Unser Streben nach Qualität und einer nachhaltigen Entwicklung ist der zentrale Faktor, der es der Cablel Hellenic Cables Group ermöglicht hat, international eine starke Marktposition zu erobern.

Das erfahrene technische und Führungs - Personal des Unternehmens legt größten Wert auf Innovation, technische Exzellenz und herausragende Qualität, sodass die Kunden von Cablel - Produkten bei Ihrer Wahl ein gutes Gewissen haben können.

Die Cablel Hellenic Cables Group ist stets darum bemüht, ihr Angebot zu verbessern und mit zuverlässigen, sicheren und auf umweltfreundlichen Technologien beruhenden Produkten, den sich ändernden Kundenwünschen auf der ganzen Welt zu entsprechen. Gleichzeitig legt die Gruppe auch einen Schwerpunkt auf die Ausbildung ihrer Mitarbeiter und die Wertschöpfung für ihre Anteilseigner, Partner und die Gesellschaft. Auch zukünftig plant die Gruppe weitere Investitionen in die Technologie und innovative Kabellösungen, um so zu einer nachhaltigen Zukunft aller Beteiligter beitragen zu können.

Mit einer starken Ausrichtung auf den Export und einem Fokus auf der Entwicklung von höherwertigen Produkten, wie Hochspannungs- und Höchstspannungskabeln, sowie Seekabel, tätigt die Gruppe bedeutende Investitionen, um ihr Produktportfolio zu erweitern, und ihr Nachhaltigkeitsprofil zu verbessern. Für die Herstellung von Hochspannungsseekabeln im Werk Fulgor hat das Unternehmen einen Investitionsplan mit einem Wert von ca. 60 Millionen Euro realisiert.

Das breite Produktspektrum des Unternehmens, das international unter der Handelsmarke Cablel vertrieben wird, beinhaltet Energiekabel mit PVC-, EPR- und VPE- Isolierung (bis zu 500 kV), Seekabel, halogenfreie und brandhemmende Kabel, Telekommunikations-, Signal- und Datenkabel mit Kupferleitern oder aus Glasfasern, sowie brandhemmende, halogenfreie Kunststoff- und Elastomerkomponenten und Lackdrähte. Die Drähte und Kabel entsprechen einer Vielzahl internationaler Normen, wie VDE, CEI, ICEA, NF, SEN, BS, UL, NEMA, JIS, ASTM, DIN und ELOT. Viele der Produkte des Unternehmens verfügen über Zertifizierungen von BASEC, VDE, IMQ, NF-USE, NETWORK RAIL, KEMA, DNV und UL.

Alle Lackdrähte von Cablel sind gemäß der Norm IEC 60317-0-1 produziert und getestet; auf Wunsch des Kunden richten wir uns jedoch auch nach jeder anderen anerkannten Norm.

Unser Streben nach Qualität und einer nachhaltigen Entwicklung ist der zentrale Faktor, der es der Cablel Hellenic Cables Group ermöglicht hat, international eine starke Marktposition zu erobern.

Das erfahrene technische und Führungs - Personal des Unternehmens legt größten Wert auf Innovation, technische Exzellenz und herausragende Qualität, sodass die Kunden von Cablel - Produkten bei Ihrer Wahl ein gutes Gewissen haben können.

Die Cablel Hellenic Cables Group ist stets darum bemüht, ihr Angebot zu verbessern und mit zuverlässiger, sicheren und auf umweltfreundlichen Technologien beruhenden Produkten, die die Kundenwünschen auf der ganzen Welt zu entsprechen. Gleichzeitig legt die Gruppe auch einen Schwerpunkt auf die Ausbildung ihrer Mitarbeiter und die Wertschöpfung für ihre Anteilseigner, Partner und die Gesellschaft. Auch zukünftig plant die Gruppe weitere Investitionen in die Technologie und innovative Kabellösungen, um so zu einer nachhaltigen Zukunft aller Beteiligter beitragen zu können.
<table>
<thead>
<tr>
<th>6/10 (12) kV</th>
<th>12/20 (24) kV</th>
<th>18/30 (36) kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x50 24.9</td>
<td>1x50 29.1</td>
<td>1x50 34.1</td>
</tr>
<tr>
<td>1x70 27.1</td>
<td>1x70 31.1</td>
<td>1x70 36.1</td>
</tr>
<tr>
<td>1x95 31.5</td>
<td>1x95 35.5</td>
<td>1x95 40.5</td>
</tr>
<tr>
<td>1x120 33.5</td>
<td>1x120 37.5</td>
<td>1x120 42.5</td>
</tr>
<tr>
<td>1x150 37.5</td>
<td>1x150 42.5</td>
<td>1x150 47.5</td>
</tr>
<tr>
<td>1x185 42.5</td>
<td>1x185 47.5</td>
<td>1x185 52.5</td>
</tr>
<tr>
<td>1x240 52.5</td>
<td>1x240 57.5</td>
<td>1x240 62.5</td>
</tr>
<tr>
<td>1x300 62.5</td>
<td>1x300 67.5</td>
<td>1x300 72.5</td>
</tr>
<tr>
<td>1x400 72.5</td>
<td>1x400 77.5</td>
<td>1x400 82.5</td>
</tr>
<tr>
<td>1x500 82.5</td>
<td>1x500 87.5</td>
<td>1x500 92.5</td>
</tr>
<tr>
<td>1x630 92.5</td>
<td>1x630 97.5</td>
<td>1x630 102.5</td>
</tr>
<tr>
<td>1x800 102.5</td>
<td>1x800 107.5</td>
<td>1x800 112.5</td>
</tr>
<tr>
<td>1x1000 112.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Verdichteter mehrdärrtiger Rundleiter
2. Extriuierte halbleitende Schicht
3. VPE - Isolierung
4. Extriuierte halbleitende Schicht (mit der Isolierung verbunden)
5. Halbleitendes Band
6. Kupferdraht (spiralförmig mit zusätzlichem Kupferband angebracht)
7. Band
8. PVC - Aussenmantel
N2XSY

Einleitkabel mit verdichtetem Kupfer - Rundleiter, VPE - isoliert, Kupferdrahtschirm, PVC - Aussenmantel

Spezifikation: VDE:0276 TEIL 620

<table>
<thead>
<tr>
<th>Dicke (mm)</th>
<th>Abstand (m)</th>
<th>Leiterqualität</th>
<th>Temperatur (°C)</th>
<th>Leitfähigkeit (µS/m)</th>
<th>Verlustwiderstand (Ohm/km)</th>
<th>Schirmwiderstand (Ohm/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.1</td>
<td>170</td>
<td>7.1</td>
<td>2.6</td>
<td>1.57±0.07</td>
<td>221</td>
<td>253</td>
</tr>
<tr>
<td>59.0</td>
<td>165</td>
<td>10.0</td>
<td>2.6</td>
<td>1.54±0.06</td>
<td>270</td>
<td>47</td>
</tr>
<tr>
<td>58.0</td>
<td>163</td>
<td>13.5</td>
<td>2.6</td>
<td>1.38±0.06</td>
<td>323</td>
<td>6.4</td>
</tr>
<tr>
<td>57.1</td>
<td>160</td>
<td>17.1</td>
<td>2.6</td>
<td>1.34±0.06</td>
<td>368</td>
<td>6.4</td>
</tr>
<tr>
<td>56.5</td>
<td>157</td>
<td>21.4</td>
<td>4.1</td>
<td>0.86±0.05</td>
<td>410</td>
<td>7.1</td>
</tr>
<tr>
<td>55.7</td>
<td>154</td>
<td>26.4</td>
<td>4.1</td>
<td>0.83±0.05</td>
<td>463</td>
<td>8.0</td>
</tr>
<tr>
<td>54.8</td>
<td>150</td>
<td>34.3</td>
<td>5.7</td>
<td>0.81±0.05</td>
<td>537</td>
<td>9.3</td>
</tr>
<tr>
<td>54.1</td>
<td>147</td>
<td>42.9</td>
<td>5.7</td>
<td>0.79±0.04</td>
<td>605</td>
<td>10.5</td>
</tr>
<tr>
<td>53.5</td>
<td>143</td>
<td>57.8</td>
<td>5.7</td>
<td>0.75±0.04</td>
<td>680</td>
<td>12.2</td>
</tr>
<tr>
<td>52.8</td>
<td>140</td>
<td>72.2</td>
<td>5.7</td>
<td>0.75±0.04</td>
<td>767</td>
<td>14.4</td>
</tr>
<tr>
<td>52.1</td>
<td>136</td>
<td>90.9</td>
<td>5.7</td>
<td>0.75±0.04</td>
<td>860</td>
<td>16.2</td>
</tr>
<tr>
<td>51.3</td>
<td>132</td>
<td>115.3</td>
<td>5.7</td>
<td>0.76±0.03</td>
<td>951</td>
<td>18.7</td>
</tr>
<tr>
<td>50.8</td>
<td>129</td>
<td>144.0</td>
<td>5.7</td>
<td>0.55±0.03</td>
<td>1,031</td>
<td>14.6</td>
</tr>
</tbody>
</table>

Berechnete induzierte Spannung

<table>
<thead>
<tr>
<th>Dicke (mm)</th>
<th>Abstand (m)</th>
<th>Leiterqualität</th>
<th>Temperatur (°C)</th>
<th>Leitfähigkeit (µS/m)</th>
<th>Verlustwiderstand (Ohm/km)</th>
<th>Schirmwiderstand (Ohm/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>57.4</td>
<td>161</td>
<td>7.1</td>
<td>2.6</td>
<td>1.57±0.08</td>
<td>221</td>
<td>277</td>
</tr>
<tr>
<td>56.6</td>
<td>158</td>
<td>10.0</td>
<td>2.6</td>
<td>1.45±0.08</td>
<td>271</td>
<td>9.4</td>
</tr>
<tr>
<td>55.9</td>
<td>155</td>
<td>13.5</td>
<td>2.6</td>
<td>1.38±0.07</td>
<td>324</td>
<td>11.2</td>
</tr>
<tr>
<td>55.3</td>
<td>152</td>
<td>17.1</td>
<td>2.6</td>
<td>1.34±0.07</td>
<td>368</td>
<td>12.7</td>
</tr>
<tr>
<td>54.8</td>
<td>150</td>
<td>21.4</td>
<td>4.1</td>
<td>0.86±0.06</td>
<td>412</td>
<td>14.3</td>
</tr>
<tr>
<td>54.2</td>
<td>148</td>
<td>26.4</td>
<td>4.1</td>
<td>0.83±0.06</td>
<td>465</td>
<td>16.1</td>
</tr>
<tr>
<td>53.5</td>
<td>144</td>
<td>34.3</td>
<td>4.1</td>
<td>0.81±0.05</td>
<td>540</td>
<td>18.7</td>
</tr>
<tr>
<td>52.9</td>
<td>142</td>
<td>42.9</td>
<td>4.1</td>
<td>0.79±0.05</td>
<td>609</td>
<td>21.1</td>
</tr>
<tr>
<td>52.5</td>
<td>138</td>
<td>57.8</td>
<td>5.7</td>
<td>0.75±0.05</td>
<td>680</td>
<td>19.2</td>
</tr>
<tr>
<td>51.9</td>
<td>136</td>
<td>72.2</td>
<td>5.7</td>
<td>0.75±0.05</td>
<td>767</td>
<td>21.7</td>
</tr>
<tr>
<td>51.3</td>
<td>132</td>
<td>90.9</td>
<td>5.7</td>
<td>0.56±0.04</td>
<td>860</td>
<td>24.3</td>
</tr>
<tr>
<td>51.0</td>
<td>129</td>
<td>115.3</td>
<td>5.7</td>
<td>0.56±0.04</td>
<td>951</td>
<td>26.9</td>
</tr>
<tr>
<td>50.7</td>
<td>126</td>
<td>144.0</td>
<td>5.7</td>
<td>0.55±0.04</td>
<td>1,031</td>
<td>29.2</td>
</tr>
</tbody>
</table>

Berechnete Leistung in Übertragungskabeln

<table>
<thead>
<tr>
<th>Dicke (mm)</th>
<th>Abstand (m)</th>
<th>Leiterqualität</th>
<th>Temperatur (°C)</th>
<th>Leitfähigkeit (µS/m)</th>
<th>Verlustwiderstand (Ohm/km)</th>
<th>Schirmwiderstand (Ohm/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.2</td>
<td>152</td>
<td>7.1</td>
<td>2.6</td>
<td>1.57±0.10</td>
<td>222</td>
<td>11.5</td>
</tr>
<tr>
<td>54.6</td>
<td>149</td>
<td>10.0</td>
<td>2.6</td>
<td>1.45±0.09</td>
<td>272</td>
<td>14.1</td>
</tr>
<tr>
<td>54.1</td>
<td>147</td>
<td>13.5</td>
<td>2.6</td>
<td>1.38±0.08</td>
<td>326</td>
<td>16.9</td>
</tr>
<tr>
<td>53.6</td>
<td>145</td>
<td>17.1</td>
<td>2.6</td>
<td>1.34±0.08</td>
<td>369</td>
<td>19.2</td>
</tr>
<tr>
<td>53.2</td>
<td>143</td>
<td>21.4</td>
<td>4.1</td>
<td>0.86±0.07</td>
<td>414</td>
<td>21.5</td>
</tr>
<tr>
<td>52.8</td>
<td>141</td>
<td>26.4</td>
<td>4.1</td>
<td>0.83±0.07</td>
<td>468</td>
<td>24.3</td>
</tr>
<tr>
<td>52.3</td>
<td>139</td>
<td>34.3</td>
<td>4.1</td>
<td>0.81±0.06</td>
<td>542</td>
<td>28.2</td>
</tr>
<tr>
<td>51.8</td>
<td>137</td>
<td>42.9</td>
<td>4.1</td>
<td>0.8±0.06</td>
<td>612</td>
<td>31.8</td>
</tr>
<tr>
<td>51.5</td>
<td>134</td>
<td>57.8</td>
<td>5.7</td>
<td>0.58±0.06</td>
<td>680</td>
<td>26.8</td>
</tr>
<tr>
<td>51.3</td>
<td>131</td>
<td>72.2</td>
<td>5.7</td>
<td>0.57±0.05</td>
<td>767</td>
<td>32.5</td>
</tr>
<tr>
<td>51.0</td>
<td>129</td>
<td>90.9</td>
<td>5.7</td>
<td>0.56±0.05</td>
<td>860</td>
<td>36.5</td>
</tr>
<tr>
<td>50.6</td>
<td>126</td>
<td>115.3</td>
<td>5.7</td>
<td>0.56±0.05</td>
<td>951</td>
<td>40.3</td>
</tr>
<tr>
<td>50.4</td>
<td>123</td>
<td>144.0</td>
<td>5.7</td>
<td>0.55±0.04</td>
<td>1,031</td>
<td>43.7</td>
</tr>
</tbody>
</table>
Kabeltyp: NA2XY

6/10 (12) kV

<table>
<thead>
<tr>
<th>Durchmesser</th>
<th>Kabelgeometrie (mm²)</th>
<th>Kupferdraht</th>
<th>Kabelgeometrie (mm²)</th>
<th>Kupferdraht</th>
<th>Kabelgeometrie (mm²)</th>
<th>Kupferdraht</th>
<th>Kabelgeometrie (mm²)</th>
<th>Kupferdraht</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x50</td>
<td>24,7</td>
<td>0,82</td>
<td>0,82</td>
<td>0,73</td>
<td>0,23</td>
<td>0,26</td>
<td>0,48</td>
<td>2,85</td>
</tr>
<tr>
<td>1x70</td>
<td>26</td>
<td>0,81</td>
<td>0,57</td>
<td>0,39</td>
<td>0,12</td>
<td>0,70</td>
<td>0,22</td>
<td>0,29</td>
</tr>
<tr>
<td>1x95</td>
<td>28</td>
<td>0,92</td>
<td>0,41</td>
<td>0,37</td>
<td>0,12</td>
<td>0,67</td>
<td>0,21</td>
<td>0,33</td>
</tr>
<tr>
<td>1x120</td>
<td>30</td>
<td>1,0</td>
<td>0,32</td>
<td>0,36</td>
<td>0,11</td>
<td>0,65</td>
<td>0,20</td>
<td>0,36</td>
</tr>
<tr>
<td>1x150</td>
<td>32</td>
<td>1,25</td>
<td>0,26</td>
<td>0,35</td>
<td>0,11</td>
<td>0,63</td>
<td>0,20</td>
<td>0,38</td>
</tr>
<tr>
<td>1x185</td>
<td>33</td>
<td>1,45</td>
<td>0,21</td>
<td>0,33</td>
<td>0,11</td>
<td>0,61</td>
<td>0,19</td>
<td>0,42</td>
</tr>
<tr>
<td>1x250</td>
<td>35</td>
<td>1,65</td>
<td>0,16</td>
<td>0,32</td>
<td>0,10</td>
<td>0,59</td>
<td>0,18</td>
<td>0,47</td>
</tr>
<tr>
<td>1x300</td>
<td>37</td>
<td>1,85</td>
<td>0,13</td>
<td>0,31</td>
<td>0,10</td>
<td>0,57</td>
<td>0,18</td>
<td>0,51</td>
</tr>
<tr>
<td>1x400</td>
<td>37</td>
<td>2,25</td>
<td>0,10</td>
<td>0,30</td>
<td>0,09</td>
<td>0,55</td>
<td>0,17</td>
<td>0,57</td>
</tr>
<tr>
<td>1x500</td>
<td>40</td>
<td>2,55</td>
<td>0,08</td>
<td>0,29</td>
<td>0,09</td>
<td>0,53</td>
<td>0,17</td>
<td>0,63</td>
</tr>
<tr>
<td>1x630</td>
<td>40</td>
<td>3,05</td>
<td>0,06</td>
<td>0,28</td>
<td>0,09</td>
<td>0,51</td>
<td>0,16</td>
<td>0,70</td>
</tr>
<tr>
<td>1x800</td>
<td>37</td>
<td>3,65</td>
<td>0,05</td>
<td>0,27</td>
<td>0,09</td>
<td>0,49</td>
<td>0,15</td>
<td>0,80</td>
</tr>
<tr>
<td>1x1000</td>
<td>36</td>
<td>4,35</td>
<td>0,04</td>
<td>0,27</td>
<td>0,08</td>
<td>0,48</td>
<td>0,15</td>
<td>0,88</td>
</tr>
</tbody>
</table>

12/20 (24) kV

<table>
<thead>
<tr>
<th>Durchmesser</th>
<th>Kabelgeometrie (mm²)</th>
<th>Kupferdraht</th>
<th>Kabelgeometrie (mm²)</th>
<th>Kupferdraht</th>
<th>Kabelgeometrie (mm²)</th>
<th>Kupferdraht</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x50</td>
<td>29</td>
<td>0,88</td>
<td>0,82</td>
<td>0,74</td>
<td>0,23</td>
<td>0,18</td>
</tr>
<tr>
<td>1x70</td>
<td>31</td>
<td>0,99</td>
<td>0,57</td>
<td>0,42</td>
<td>0,13</td>
<td>0,71</td>
</tr>
<tr>
<td>1x95</td>
<td>32</td>
<td>1,1</td>
<td>0,40</td>
<td>0,40</td>
<td>0,13</td>
<td>0,68</td>
</tr>
<tr>
<td>1x120</td>
<td>34</td>
<td>1,2</td>
<td>0,32</td>
<td>0,38</td>
<td>0,12</td>
<td>0,66</td>
</tr>
<tr>
<td>1x150</td>
<td>35</td>
<td>1,45</td>
<td>0,26</td>
<td>0,37</td>
<td>0,12</td>
<td>0,64</td>
</tr>
<tr>
<td>1x185</td>
<td>37</td>
<td>1,65</td>
<td>0,21</td>
<td>0,36</td>
<td>0,11</td>
<td>0,62</td>
</tr>
<tr>
<td>1x250</td>
<td>37</td>
<td>2,25</td>
<td>0,16</td>
<td>0,34</td>
<td>0,11</td>
<td>0,59</td>
</tr>
<tr>
<td>1x300</td>
<td>40</td>
<td>2,55</td>
<td>0,13</td>
<td>0,33</td>
<td>0,10</td>
<td>0,58</td>
</tr>
<tr>
<td>1x400</td>
<td>40</td>
<td>3,05</td>
<td>0,10</td>
<td>0,32</td>
<td>0,10</td>
<td>0,55</td>
</tr>
<tr>
<td>1x500</td>
<td>48</td>
<td>3,55</td>
<td>0,08</td>
<td>0,31</td>
<td>0,10</td>
<td>0,54</td>
</tr>
<tr>
<td>1x630</td>
<td>51</td>
<td>3,65</td>
<td>0,06</td>
<td>0,30</td>
<td>0,09</td>
<td>0,52</td>
</tr>
<tr>
<td>1x800</td>
<td>56</td>
<td>4,05</td>
<td>0,05</td>
<td>0,29</td>
<td>0,09</td>
<td>0,50</td>
</tr>
<tr>
<td>1x1000</td>
<td>60</td>
<td>4,75</td>
<td>0,04</td>
<td>0,28</td>
<td>0,09</td>
<td>0,48</td>
</tr>
</tbody>
</table>

18/30 (36) kV

<table>
<thead>
<tr>
<th>Durchmesser</th>
<th>Kabelgeometrie (mm²)</th>
<th>Kupferdraht</th>
<th>Kabelgeometrie (mm²)</th>
<th>Kupferdraht</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x50</td>
<td>34</td>
<td>1,1</td>
<td>0,82</td>
<td>0,75</td>
</tr>
<tr>
<td>1x70</td>
<td>36</td>
<td>1,2</td>
<td>0,57</td>
<td>0,45</td>
</tr>
<tr>
<td>1x95</td>
<td>37</td>
<td>1,4</td>
<td>0,41</td>
<td>0,43</td>
</tr>
<tr>
<td>1x120</td>
<td>39</td>
<td>1,5</td>
<td>0,32</td>
<td>0,41</td>
</tr>
<tr>
<td>1x150</td>
<td>40</td>
<td>1,75</td>
<td>0,26</td>
<td>0,40</td>
</tr>
<tr>
<td>1x185</td>
<td>42</td>
<td>1,95</td>
<td>0,21</td>
<td>0,38</td>
</tr>
<tr>
<td>1x250</td>
<td>44</td>
<td>2,15</td>
<td>0,16</td>
<td>0,37</td>
</tr>
<tr>
<td>1x300</td>
<td>46</td>
<td>2,45</td>
<td>0,13</td>
<td>0,36</td>
</tr>
<tr>
<td>1x400</td>
<td>50</td>
<td>2,85</td>
<td>0,10</td>
<td>0,34</td>
</tr>
<tr>
<td>1x500</td>
<td>53</td>
<td>3,25</td>
<td>0,08</td>
<td>0,33</td>
</tr>
<tr>
<td>1x630</td>
<td>57</td>
<td>3,75</td>
<td>0,06</td>
<td>0,32</td>
</tr>
<tr>
<td>1x800</td>
<td>62</td>
<td>4,45</td>
<td>0,05</td>
<td>0,31</td>
</tr>
<tr>
<td>1x1000</td>
<td>66</td>
<td>5,25</td>
<td>0,04</td>
<td>0,30</td>
</tr>
</tbody>
</table>

1. Verdichteter mehrdrähtiger Rundleiter
2. Extrudierte halbleitende Schicht
3. VPE - Isolierung
4. Extrudierte halbleitende Schicht (mit der Isolierung verbunden)
5. Halbleitendes Band
6. Kupferdrähte (spiralförmig mit zusätzlichem Kupferband angebracht)
7. Band
8. PVC - Aussenmantel
NA2XY SY

Einleiterkabel mit verdichtetem Aluminium - Rundleiter, VPE - isoliert, Kupferdrahtschirm, PVC - Aussenmantel

<table>
<thead>
<tr>
<th>Mittlerer inaktiver Spannung (U) 6kV</th>
<th>6kV</th>
<th>6kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.2</td>
<td>171</td>
<td>4.7</td>
</tr>
<tr>
<td>59.1</td>
<td>167</td>
<td>6.6</td>
</tr>
<tr>
<td>58.0</td>
<td>163</td>
<td>8.9</td>
</tr>
<tr>
<td>57.2</td>
<td>160</td>
<td>11.3</td>
</tr>
<tr>
<td>56.6</td>
<td>157</td>
<td>14.1</td>
</tr>
<tr>
<td>55.8</td>
<td>154</td>
<td>17.4</td>
</tr>
<tr>
<td>54.8</td>
<td>150</td>
<td>22.6</td>
</tr>
<tr>
<td>54.1</td>
<td>147</td>
<td>28.3</td>
</tr>
<tr>
<td>53.6</td>
<td>144</td>
<td>37.7</td>
</tr>
<tr>
<td>52.9</td>
<td>140</td>
<td>47.2</td>
</tr>
<tr>
<td>52.2</td>
<td>137</td>
<td>59.5</td>
</tr>
<tr>
<td>51.3</td>
<td>132</td>
<td>76.4</td>
</tr>
<tr>
<td>50.9</td>
<td>130</td>
<td>95.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Querschnitt (mm²)</th>
<th>Kabelgesamtdurchmesser (mm²)</th>
<th>Kupferdrahtschirmstromwiderstand bei 20°C (Ohm/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0367</td>
<td>5.2</td>
<td>0.04</td>
</tr>
<tr>
<td>0.0469</td>
<td>4.4</td>
<td>0.06</td>
</tr>
<tr>
<td>0.0605</td>
<td>2.8</td>
<td>0.16</td>
</tr>
<tr>
<td>0.0778</td>
<td>2.4</td>
<td>0.13</td>
</tr>
<tr>
<td>0.100</td>
<td>1.9</td>
<td>0.41</td>
</tr>
<tr>
<td>0.125</td>
<td>1.7</td>
<td>0.88</td>
</tr>
<tr>
<td>0.125</td>
<td>1.5</td>
<td>0.80</td>
</tr>
<tr>
<td>0.125</td>
<td>1.3</td>
<td>0.75</td>
</tr>
<tr>
<td>0.253</td>
<td>1.0</td>
<td>0.55</td>
</tr>
<tr>
<td>0.253</td>
<td>0.8</td>
<td>0.40</td>
</tr>
<tr>
<td>0.253</td>
<td>0.6</td>
<td>0.30</td>
</tr>
<tr>
<td>0.443</td>
<td>0.4</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Leitfähigkeit

- **Nullsequenzimpedanz (Rückkehr durch Metallmantel bei 50°C)**

<table>
<thead>
<tr>
<th>Mittlerer inaktiver Spannung (U) 6kV</th>
<th>Mittlerer inaktiver Spannung (U) 6kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.2</td>
<td>152</td>
</tr>
<tr>
<td>54.7</td>
<td>150</td>
</tr>
<tr>
<td>54.1</td>
<td>147</td>
</tr>
<tr>
<td>53.7</td>
<td>145</td>
</tr>
<tr>
<td>53.3</td>
<td>144</td>
</tr>
<tr>
<td>52.9</td>
<td>142</td>
</tr>
<tr>
<td>52.3</td>
<td>139</td>
</tr>
<tr>
<td>51.9</td>
<td>137</td>
</tr>
<tr>
<td>51.6</td>
<td>134</td>
</tr>
<tr>
<td>51.4</td>
<td>132</td>
</tr>
<tr>
<td>51.1</td>
<td>129</td>
</tr>
<tr>
<td>50.6</td>
<td>126</td>
</tr>
<tr>
<td>50.5</td>
<td>124</td>
</tr>
</tbody>
</table>

Leistung

- **Übertragende Leistung an Luft**

<table>
<thead>
<tr>
<th>Mittlerer inaktiver Spannung (U) 6kV</th>
<th>Mittlerer inaktiver Spannung (U) 6kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.2</td>
<td>152</td>
</tr>
<tr>
<td>54.7</td>
<td>150</td>
</tr>
<tr>
<td>54.1</td>
<td>147</td>
</tr>
<tr>
<td>53.7</td>
<td>145</td>
</tr>
<tr>
<td>53.3</td>
<td>144</td>
</tr>
<tr>
<td>52.9</td>
<td>142</td>
</tr>
<tr>
<td>52.3</td>
<td>139</td>
</tr>
<tr>
<td>51.9</td>
<td>137</td>
</tr>
<tr>
<td>51.6</td>
<td>134</td>
</tr>
<tr>
<td>51.4</td>
<td>132</td>
</tr>
<tr>
<td>51.1</td>
<td>129</td>
</tr>
<tr>
<td>50.6</td>
<td>126</td>
</tr>
<tr>
<td>50.5</td>
<td>124</td>
</tr>
</tbody>
</table>

Spezifikation: VDE:0276 TEIL 620
<table>
<thead>
<tr>
<th>6/10 (12) kV</th>
<th>12/20 (24) kV</th>
<th>18/30 (36) kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x50 25 0.91 0.387 0.49 0.49 0.13 0.73 0.23 0.26 0.49 2.33 2.33 1.37</td>
<td>1x50 29 1.1 0.387 0.49 0.49 0.9 0.74 0.23 0.18 0.69 8.29 3.27 1.53</td>
<td>1x50 34 1.3 0.387 0.49 0.49 0.15 0.72 0.23 0.14 0.80 14.41 3.82 1.43</td>
</tr>
<tr>
<td>1x70 27 1.1 0.268 0.34 0.34 0.12 0.71 0.22 0.20 0.76 9.53 3.14 1.58</td>
<td>1x70 36 0.9 0.268 0.25 0.25 0.12 0.68 0.21 0.22 0.84 10.13 3.02 1.63</td>
<td>1x70 35 1.5 0.268 0.34 0.34 0.13 0.75 0.23 0.16 0.88 15.88 3.63 1.49</td>
</tr>
<tr>
<td>1x95 28 1.4 0.193 0.25 0.25 0.12 0.67 0.21 0.33 0.61 8.36 2.20 1.44</td>
<td>1x95 38 1.6 0.193 0.25 0.25 0.12 0.67 0.21 0.33 0.61 8.36 2.20 1.44</td>
<td>1x95 38 1.8 0.193 0.25 0.25 0.12 0.67 0.21 0.33 0.61 8.36 2.20 1.44</td>
</tr>
<tr>
<td>1x120 30 1.6 0.153 0.20 0.20 0.12 0.65 0.20 0.36 0.67 4.37 2.16 1.46</td>
<td>1x120 30 1.6 0.153 0.20 0.20 0.12 0.65 0.20 0.36 0.67 4.37 2.16 1.46</td>
<td>1x120 30 1.6 0.153 0.20 0.20 0.12 0.65 0.20 0.36 0.67 4.37 2.16 1.46</td>
</tr>
<tr>
<td>1x150 31 2.0 0.124 0.16 0.16 0.11 0.63 0.20 0.39 0.73 4.65 2.12 1.48</td>
<td>1x150 31 2.0 0.124 0.16 0.16 0.11 0.63 0.20 0.39 0.73 4.65 2.12 1.48</td>
<td>1x150 31 2.0 0.124 0.16 0.16 0.11 0.63 0.20 0.39 0.73 4.65 2.12 1.48</td>
</tr>
<tr>
<td>1x185 33 2.3 0.0991 0.13 0.13 0.11 0.61 0.19 0.42 0.79 4.61 2.09 1.50</td>
<td>1x185 33 2.3 0.0991 0.13 0.13 0.11 0.61 0.19 0.42 0.79 4.61 2.09 1.50</td>
<td>1x185 33 2.3 0.0991 0.13 0.13 0.11 0.61 0.19 0.42 0.79 4.61 2.09 1.50</td>
</tr>
<tr>
<td>1x250 35 2.9 0.0754 0.10 0.10 0.10 0.58 0.18 0.47 0.89 5.32 2.05 1.53</td>
<td>1x250 35 2.9 0.0754 0.10 0.10 0.10 0.58 0.18 0.47 0.89 5.32 2.05 1.53</td>
<td>1x250 35 2.9 0.0754 0.10 0.10 0.10 0.58 0.18 0.47 0.89 5.32 2.05 1.53</td>
</tr>
<tr>
<td>1x300 38 3.5 0.0601 0.08 0.08 0.10 0.57 0.18 0.52 0.97 5.32 2.03 1.55</td>
<td>1x300 38 3.5 0.0601 0.08 0.08 0.10 0.57 0.18 0.52 0.97 5.32 2.03 1.55</td>
<td>1x300 38 3.5 0.0601 0.08 0.08 0.10 0.57 0.18 0.52 0.97 5.32 2.03 1.55</td>
</tr>
<tr>
<td>1x400 41 4.4 0.0470 0.06 0.06 0.10 0.55 0.17 0.58 1.10 6.16 1.99 1.57</td>
<td>1x400 41 4.4 0.0470 0.06 0.06 0.10 0.55 0.17 0.58 1.10 6.16 1.99 1.57</td>
<td>1x400 41 4.4 0.0470 0.06 0.06 0.10 0.55 0.17 0.58 1.10 6.16 1.99 1.57</td>
</tr>
<tr>
<td>1x500 46 5.4 0.0306 0.05 0.05 0.09 0.53 0.17 0.64 1.21 7.38 1.97 1.59</td>
<td>1x500 46 5.4 0.0306 0.05 0.05 0.09 0.53 0.17 0.64 1.21 7.38 1.97 1.59</td>
<td>1x500 46 5.4 0.0306 0.05 0.05 0.09 0.53 0.17 0.64 1.21 7.38 1.97 1.59</td>
</tr>
<tr>
<td>1x630 48 6.8 0.0283 0.04 0.04 0.09 0.51 0.16 0.71 1.34 8.50 1.95 1.60</td>
<td>1x630 48 6.8 0.0283 0.04 0.04 0.09 0.51 0.16 0.71 1.34 8.50 1.95 1.60</td>
<td>1x630 48 6.8 0.0283 0.04 0.04 0.09 0.51 0.16 0.71 1.34 8.50 1.95 1.60</td>
</tr>
<tr>
<td>1x800 52 8.5 0.0221 0.04 0.03 0.09 0.49 0.15 0.81 1.52 9.15 1.93 1.62</td>
<td>1x800 52 8.5 0.0221 0.04 0.03 0.09 0.49 0.15 0.81 1.52 9.15 1.93 1.62</td>
<td>1x800 52 8.5 0.0221 0.04 0.03 0.09 0.49 0.15 0.81 1.52 9.15 1.93 1.62</td>
</tr>
<tr>
<td>1x1000 57 10.5 0.0176 0.03 0.02 0.08 0.47 0.15 0.90 1.69 10.13 1.91 1.63</td>
<td>1x1000 57 10.5 0.0176 0.03 0.02 0.08 0.47 0.15 0.90 1.69 10.13 1.91 1.63</td>
<td>1x1000 57 10.5 0.0176 0.03 0.02 0.08 0.47 0.15 0.90 1.69 10.13 1.91 1.63</td>
</tr>
</tbody>
</table>

1. Verdichteter mehrdärtiger Rundleiter
2. Extrudierte halbleitende Schicht
3. VPE - Isolierung
4. Extrudierte halbleitende Schicht (mit der Isolierung verbunden)
5. Halbleitendes Band
6. Kupferdraht (spiralförmig mit zusätzlichem Kupferband angebracht)
7. Band
8. PE - Aussenmantel
N2XS2Y

Einleiterkabel mit verdichtetem Kupfer - Rundleiter, VPE - isoliert, Kupferdrahtschirm, PE - Aussenmantel

<table>
<thead>
<tr>
<th>Leitungsquerschnitt (mm²)</th>
<th>Mindestbiegeradius vor die Verlegung (C)</th>
<th>Flächenleitfähigkeit in Luft (A/km</th>
<th>Leitungstemperatur</th>
<th>Ω/km</th>
<th>Mindestbiegeradius vor die Verlegung (C)</th>
<th>Flächenleitfähigkeit in Luft (A/km</th>
<th>Leitungstemperatur</th>
<th>Ω/km</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,16</td>
<td>6.0</td>
<td>485</td>
<td>24.5</td>
<td>691</td>
<td>6.0</td>
<td>485</td>
<td>24.5</td>
<td>691</td>
</tr>
<tr>
<td>0,25</td>
<td>6.0</td>
<td>635</td>
<td>24.5</td>
<td>691</td>
<td>6.0</td>
<td>635</td>
<td>24.5</td>
<td>691</td>
</tr>
<tr>
<td>0,50</td>
<td>6.0</td>
<td>1270</td>
<td>24.5</td>
<td>691</td>
<td>6.0</td>
<td>1270</td>
<td>24.5</td>
<td>691</td>
</tr>
<tr>
<td>1,00</td>
<td>6.0</td>
<td>2540</td>
<td>24.5</td>
<td>691</td>
<td>6.0</td>
<td>2540</td>
<td>24.5</td>
<td>691</td>
</tr>
<tr>
<td>2,50</td>
<td>6.0</td>
<td>6350</td>
<td>24.5</td>
<td>691</td>
<td>6.0</td>
<td>6350</td>
<td>24.5</td>
<td>691</td>
</tr>
<tr>
<td>4,00</td>
<td>6.0</td>
<td>12700</td>
<td>24.5</td>
<td>691</td>
<td>6.0</td>
<td>12700</td>
<td>24.5</td>
<td>691</td>
</tr>
<tr>
<td>6,00</td>
<td>6.0</td>
<td>19050</td>
<td>24.5</td>
<td>691</td>
<td>6.0</td>
<td>19050</td>
<td>24.5</td>
<td>691</td>
</tr>
<tr>
<td>10,00</td>
<td>6.0</td>
<td>31700</td>
<td>24.5</td>
<td>691</td>
<td>6.0</td>
<td>31700</td>
<td>24.5</td>
<td>691</td>
</tr>
</tbody>
</table>

Spezifikation: VDE:0276 TEIL 620

Hellenic Cables Group

Berechneter Leiterwechsel (mV/A/km)

<table>
<thead>
<tr>
<th>Leitungsquerschnitt (mm²)</th>
<th>Leiterwechsel (mV/A/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,16</td>
<td>0.09</td>
</tr>
<tr>
<td>0,25</td>
<td>0.09</td>
</tr>
<tr>
<td>0,50</td>
<td>0.09</td>
</tr>
<tr>
<td>1,00</td>
<td>0.09</td>
</tr>
<tr>
<td>2,50</td>
<td>0.09</td>
</tr>
<tr>
<td>4,00</td>
<td>0.09</td>
</tr>
<tr>
<td>6,00</td>
<td>0.09</td>
</tr>
<tr>
<td>10,00</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Berechnete Kapazität (µF/km)

<table>
<thead>
<tr>
<th>Leitungsquerschnitt (mm²)</th>
<th>Kapazität (µF/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,16</td>
<td>0.05</td>
</tr>
<tr>
<td>0,25</td>
<td>0.05</td>
</tr>
<tr>
<td>0,50</td>
<td>0.05</td>
</tr>
<tr>
<td>1,00</td>
<td>0.05</td>
</tr>
<tr>
<td>2,50</td>
<td>0.05</td>
</tr>
<tr>
<td>4,00</td>
<td>0.05</td>
</tr>
<tr>
<td>6,00</td>
<td>0.05</td>
</tr>
<tr>
<td>10,00</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Berechnete induktive Reaktanz (Ω/km)

<table>
<thead>
<tr>
<th>6/10 (12) kV</th>
<th>12/20 (24) kV</th>
<th>18/30 (36) kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x50 24.9 0.62 16 0.641 0.82 0.82 0.42 0.13 0.73 0.23 0.26 0.48 2.85 3.25 1.36</td>
<td>1x70 27 0.71 16 0.443 0.57 0.57 0.40 0.12 0.70 0.22 0.29 0.55 3.63 2.27 1.40</td>
<td>1x50 34 0.99 16 0.641 0.82 0.82 0.48 0.15 0.75 0.24 0.14 0.79 14.22 3.85 1.43</td>
</tr>
<tr>
<td>1x95 28 0.82 16 0.320 0.41 0.41 0.37 0.12 0.67 0.21 0.33 0.61 3.3 2.0 1.44</td>
<td>1x120 30 0.91 16 0.253 0.33 0.32 0.36 0.11 0.65 0.20 0.36 0.67 4.14 2.16 1.46</td>
<td>1x70 31 0.97 16 0.443 0.57 0.57 0.46 0.14 0.72 0.23 0.16 0.88 15.74 3.64 1.48</td>
</tr>
<tr>
<td>1x150 31 1.1 25 0.206 0.27 0.26 0.35 0.11 0.63 0.20 0.38 0.72 4.6 2.13 1.48</td>
<td>1x185 33 1.2 25 0.164 0.21 0.21 0.34 0.11 0.61 0.19 0.42 0.79 4.26 2.09 1.50</td>
<td>1x95 38 1.2 16 0.320 0.41 0.41 0.43 0.14 0.69 0.22 0.17 0.97 17.43 3.47 1.54</td>
</tr>
<tr>
<td>1x250 35 1.4 25 0.125 0.16 0.16 0.32 0.10 0.59 0.18 0.47 0.88 5.97 2.05 1.53</td>
<td>1x300 37 1.6 25 0.100 0.13 0.13 0.31 0.10 0.57 0.18 0.51 0.97 5.85 2.03 1.55</td>
<td>1x120 39 1.3 16 0.253 0.33 0.32 0.39 0.12 0.66 0.21 0.24 0.91 10.95 2.95 1.66</td>
</tr>
<tr>
<td>1x400 41 2.0 35 0.0778 0.10 0.10 0.30 0.09 0.55 0.17 0.57 1.08 6.59 2.00 1.57</td>
<td>1x500 44 2.4 35 0.0605 0.08 0.08 0.29 0.09 0.53 0.17 0.63 1.19 7.32 1.97 1.58</td>
<td>1x150 40 1.5 25 0.206 0.27 0.26 0.37 0.12 0.64 0.20 0.26 0.97 11.68 2.89 1.69</td>
</tr>
<tr>
<td>1x630 47 2.6 35 0.0469 0.06 0.06 0.28 0.09 0.51 0.16 0.70 1.32 7.43 1.95 1.60</td>
<td>1x800 52 3.4 35 0.0367 0.05 0.05 0.27 0.09 0.49 0.15 0.80 1.51 9.46 1.93 1.62</td>
<td>1x1000 56 4.1 35 0.0291 0.04 0.04 0.27 0.08 0.48 0.15 0.88 1.66 9.26 1.91 1.63</td>
</tr>
<tr>
<td>1x1000 64 4.3 35 0.0291 0.04 0.04 0.28 0.09 0.48 0.15 0.57 2.14 25.66 2.47 1.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leiterdurchmesser</td>
<td>Nennaußendurchmesser (mm)</td>
<td>VDE Belastbarkeit in Erde (MVA, f=50Hz)</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>1.50</td>
<td>22</td>
<td>9.10</td>
</tr>
<tr>
<td>1.60</td>
<td>22</td>
<td>9.10</td>
</tr>
<tr>
<td>1.80</td>
<td>22</td>
<td>9.10</td>
</tr>
<tr>
<td>2.00</td>
<td>22</td>
<td>9.10</td>
</tr>
<tr>
<td>2.20</td>
<td>22</td>
<td>9.10</td>
</tr>
<tr>
<td>2.40</td>
<td>22</td>
<td>9.10</td>
</tr>
<tr>
<td>2.60</td>
<td>22</td>
<td>9.10</td>
</tr>
<tr>
<td>2.80</td>
<td>22</td>
<td>9.10</td>
</tr>
<tr>
<td>3.00</td>
<td>22</td>
<td>9.10</td>
</tr>
<tr>
<td>3.20</td>
<td>22</td>
<td>9.10</td>
</tr>
<tr>
<td>3.40</td>
<td>22</td>
<td>9.10</td>
</tr>
<tr>
<td>3.60</td>
<td>22</td>
<td>9.10</td>
</tr>
<tr>
<td>3.80</td>
<td>22</td>
<td>9.10</td>
</tr>
<tr>
<td>4.00</td>
<td>22</td>
<td>9.10</td>
</tr>
</tbody>
</table>

NA2XS2Y

Einleiterkabel mit verdichtetem Aluminium - Rundleiter, VPE - isoliert, Kupferdrahtschirm, PE - Aussenmantel
<table>
<thead>
<tr>
<th>Kabeltyp: N2XS(F)2Y</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Leistungsstufe</th>
<th>12/20 (24) kV</th>
<th>18/30 (36) kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x50</td>
<td>29.1 16 0.387 0.49 0.45 0.14 0.74 0.23 0.18 0.69 8.29 3.27 1.53</td>
<td>1x50</td>
</tr>
<tr>
<td>1x70</td>
<td>31.1 16 0.268 0.34 0.34 0.45 0.14 0.72 0.23 0.16 0.88 15.88 3.63 1.49</td>
<td>1x70</td>
</tr>
<tr>
<td>1x95</td>
<td>32.1 16 0.193 0.25 0.25 0.43 0.14 0.69 0.22 0.17 0.97 17.43 3.47 1.54</td>
<td>1x95</td>
</tr>
<tr>
<td>1x120</td>
<td>34.1 16 0.153 0.20 0.20 0.41 0.13 0.66 0.21 0.19 1.05 18.82 3.35 1.58</td>
<td>1x120</td>
</tr>
<tr>
<td>1x150</td>
<td>35.2 15 0.124 0.16 0.16 0.37 0.12 0.64 0.20 0.21 0.99 11.83 2.88 1.69</td>
<td>1x150</td>
</tr>
<tr>
<td>1x185</td>
<td>37.2 15 0.099 0.13 0.13 0.36 0.11 0.62 0.19 0.28 1.07 12.82 2.82 1.72</td>
<td>1x185</td>
</tr>
<tr>
<td>1x240</td>
<td>39.2 14 0.075 0.10 0.10 0.34 0.11 0.59 0.19 0.32 1.19 14.24 2.74 1.76</td>
<td>1x240</td>
</tr>
<tr>
<td>1x300</td>
<td>42.2 14 0.060 0.08 0.08 0.33 0.10 0.57 0.18 0.34 1.29 15.49 2.69 1.79</td>
<td>1x300</td>
</tr>
<tr>
<td>1x400</td>
<td>45.2 15 0.047 0.06 0.06 0.32 0.10 0.56 0.17 0.38 1.44 17.32 2.63 1.83</td>
<td>1x400</td>
</tr>
<tr>
<td>1x500</td>
<td>48.2 15 0.036 0.05 0.05 0.31 0.10 0.54 0.17 0.42 1.58 18.99 2.59 1.86</td>
<td>1x500</td>
</tr>
<tr>
<td>1x630</td>
<td>51.2 15 0.028 0.04 0.04 0.30 0.10 0.52 0.16 0.46 1.75 21.10 2.54 1.89</td>
<td>1x630</td>
</tr>
<tr>
<td>1x800</td>
<td>57.2 15 0.022 0.03 0.03 0.29 0.09 0.50 0.16 0.52 1.97 23.65 2.50 1.92</td>
<td>1x800</td>
</tr>
<tr>
<td>1x1000</td>
<td>61.2 15 0.017 0.02 0.02 0.28 0.09 0.48 0.15 0.58 2.18 26.18 2.47 1.94</td>
<td>1x1000</td>
</tr>
</tbody>
</table>
N2XS(F)2Y
Einleiterkabel mit verdichtetem Kupfer - Rundleiter, VPE - isoliert, Kupferdrahtschirm, PE - Aussenmantel

<table>
<thead>
<tr>
<th>Kabelspecifikation: VDE:0276 TEIL 620</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Abmessungen</th>
<th>Induktive Spannung (15 kHz)</th>
<th>Stromwiderstand bei 20 °C</th>
<th>Zulässiger Leiterkurzschlussstrom (bei 20 °C)</th>
<th>Übersetzende Leistung in Erde, Flachanordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mm²)</td>
<td>(V/km)</td>
<td>(Ohm/km)</td>
<td>(kA)</td>
<td>(MVA, f = 50 Hz)</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

60.5	57.7	65.0	72.3	80.6
59.4	56.9	64.2	71.7	80.0
58.3	56.2	63.5	71.1	80.0
57.5	55.6	62.8	70.8	80.0
56.8	54.5	61.5	70.4	80.0
55.1	53.7	60.2	70.0	80.0
54.4	52.7	58.9	69.7	80.0
53.0	51.4	57.5	69.3	80.0
52.3	50.8	55.6	68.9	80.0
51.0	50.0	54.4	68.5	80.0
57.7	56.9	66.0	75.7	80.0
56.9	56.2	65.5	75.4	80.0
55.6	54.5	64.2	75.0	80.0
55.0	53.7	62.8	74.6	80.0
54.5	53.3	61.6	74.2	80.0
53.7	52.7	60.6	73.8	80.0
52.7	51.5	58.6	73.4	80.0
51.6	50.8	55.5	73.0	80.0

Belastbarkeit in Erde, Flachanordnung:
<table>
<thead>
<tr>
<th>(MVA, f = 50 Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.0</td>
</tr>
</tbody>
</table>

Belastbarkeit an Luft, Dreieckanordnung:
<table>
<thead>
<tr>
<th>(MVA, f = 50 Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.0</td>
</tr>
</tbody>
</table>

Spezifikation: VDE:0276 TEIL 620

<table>
<thead>
<tr>
<th>Maximaler zulässiger Stromkurzschlussstrom bei 250 °C</th>
<th>(kA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120.0</td>
<td></td>
</tr>
</tbody>
</table>

Mindesttemperatur für die Verlegung (°C):
<table>
<thead>
<tr>
<th>Temp. °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

Kabelübersicht:
- Kabelgesamtdurchmesser
- Stromwiderstand bei 20 °C
- Zulässiger Leiterkurzschlussstrom
- Übersetzende Leistung in Erde, Flachanordnung
- Übersetzende Leistung an Luft, Dreieckanordnung

Technischen Daten:
- Kabelzusammensetzung: Kupfer - VPE - Isolierung, Kupferdrahtschirm, PE - Aussenmantel
- Kabelzulassung: VDE:0276 TEIL 620
<table>
<thead>
<tr>
<th>6/10 (12) kV</th>
<th>12/20 (24) kV</th>
<th>18/30 (36) kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x50</td>
<td>1x50</td>
<td>1x50</td>
</tr>
<tr>
<td>2x50</td>
<td>2x50</td>
<td>2x50</td>
</tr>
<tr>
<td>3x50</td>
<td>3x50</td>
<td>3x50</td>
</tr>
<tr>
<td>4x50</td>
<td>4x50</td>
<td>4x50</td>
</tr>
<tr>
<td>5x50</td>
<td>5x50</td>
<td>5x50</td>
</tr>
<tr>
<td>6x50</td>
<td>6x50</td>
<td>6x50</td>
</tr>
<tr>
<td>7x50</td>
<td>7x50</td>
<td>7x50</td>
</tr>
<tr>
<td>8x50</td>
<td>8x50</td>
<td>8x50</td>
</tr>
<tr>
<td>9x50</td>
<td>9x50</td>
<td>9x50</td>
</tr>
<tr>
<td>10x50</td>
<td>10x50</td>
<td>10x50</td>
</tr>
<tr>
<td>1x100</td>
<td>1x100</td>
<td>1x100</td>
</tr>
<tr>
<td>2x100</td>
<td>2x100</td>
<td>2x100</td>
</tr>
<tr>
<td>3x100</td>
<td>3x100</td>
<td>3x100</td>
</tr>
<tr>
<td>4x100</td>
<td>4x100</td>
<td>4x100</td>
</tr>
<tr>
<td>5x100</td>
<td>5x100</td>
<td>5x100</td>
</tr>
<tr>
<td>6x100</td>
<td>6x100</td>
<td>6x100</td>
</tr>
<tr>
<td>7x100</td>
<td>7x100</td>
<td>7x100</td>
</tr>
<tr>
<td>8x100</td>
<td>8x100</td>
<td>8x100</td>
</tr>
<tr>
<td>9x100</td>
<td>9x100</td>
<td>9x100</td>
</tr>
<tr>
<td>10x100</td>
<td>10x100</td>
<td>10x100</td>
</tr>
</tbody>
</table>

1. Verdichteter mehrdrähtiger Rundleiter
2. Exziurierte halbleitende Schicht
3. VPE - Isolierung
4. Exziurierte halbleitende Schicht (mit der Isolierung verbunden)
5. Halbleitendes, wasserichtiges Band
6. Kupferdrähte (spiralförmig mit zusätzlichem Kupferband angebracht)
7. Band
8. PE - Aussenmantel
NA2XS(F)2Y
Einleiterkabel mit verdichtetem Aluminium - Rundleiter, VPE - isoliert, Kupferdrahtschirm, PE - Aussenmantel

<table>
<thead>
<tr>
<th>Temperatur (°C)</th>
<th>PE - Aussenmantel</th>
<th>flach mit 70 mm Abstand</th>
<th>spiralförmig mit 50 mm Abstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.5</td>
<td>51.5</td>
<td>51.0</td>
<td>50.9</td>
</tr>
<tr>
<td>54.9</td>
<td>54.3</td>
<td>54.8</td>
<td>54.9</td>
</tr>
<tr>
<td>53.9</td>
<td>53.9</td>
<td>53.8</td>
<td>53.9</td>
</tr>
<tr>
<td>53.1</td>
<td>53.2</td>
<td>53.2</td>
<td>53.1</td>
</tr>
<tr>
<td>52.8</td>
<td>52.2</td>
<td>52.3</td>
<td>52.6</td>
</tr>
<tr>
<td>51.6</td>
<td>51.3</td>
<td>51.5</td>
<td>51.7</td>
</tr>
<tr>
<td>50.9</td>
<td>50.7</td>
<td>50.5</td>
<td>50.8</td>
</tr>
</tbody>
</table>

Betriebstemperatur (Legung flach mit 70 mm Abstand) (Ohm/km)

<table>
<thead>
<tr>
<th>Temperatur (°C)</th>
<th>PE - Aussenmantel</th>
<th>flach mit 70 mm Abstand</th>
<th>spiralförmig mit 50 mm Abstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.5</td>
<td>51.5</td>
<td>51.0</td>
<td>50.9</td>
</tr>
<tr>
<td>54.9</td>
<td>54.3</td>
<td>54.8</td>
<td>54.9</td>
</tr>
<tr>
<td>53.9</td>
<td>53.9</td>
<td>53.8</td>
<td>53.9</td>
</tr>
<tr>
<td>53.1</td>
<td>53.2</td>
<td>53.2</td>
<td>53.1</td>
</tr>
<tr>
<td>52.8</td>
<td>52.2</td>
<td>52.3</td>
<td>52.6</td>
</tr>
<tr>
<td>51.6</td>
<td>51.3</td>
<td>51.5</td>
<td>51.7</td>
</tr>
<tr>
<td>50.9</td>
<td>50.7</td>
<td>50.5</td>
<td>50.8</td>
</tr>
</tbody>
</table>

Betriebstemperatur (Legung flach mit 70 mm Abstand) (Ohm/km)

<table>
<thead>
<tr>
<th>Temperatur (°C)</th>
<th>PE - Aussenmantel</th>
<th>flach mit 70 mm Abstand</th>
<th>spiralförmig mit 50 mm Abstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.5</td>
<td>51.5</td>
<td>51.0</td>
<td>50.9</td>
</tr>
<tr>
<td>54.9</td>
<td>54.3</td>
<td>54.8</td>
<td>54.9</td>
</tr>
<tr>
<td>53.9</td>
<td>53.9</td>
<td>53.8</td>
<td>53.9</td>
</tr>
<tr>
<td>53.1</td>
<td>53.2</td>
<td>53.2</td>
<td>53.1</td>
</tr>
<tr>
<td>52.8</td>
<td>52.2</td>
<td>52.3</td>
<td>52.6</td>
</tr>
<tr>
<td>51.6</td>
<td>51.3</td>
<td>51.5</td>
<td>51.7</td>
</tr>
<tr>
<td>50.9</td>
<td>50.7</td>
<td>50.5</td>
<td>50.8</td>
</tr>
</tbody>
</table>

Betriebstemperatur (Legung flach mit 70 mm Abstand) (Ohm/km)

<table>
<thead>
<tr>
<th>Temperatur (°C)</th>
<th>PE - Aussenmantel</th>
<th>flach mit 70 mm Abstand</th>
<th>spiralförmig mit 50 mm Abstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.5</td>
<td>51.5</td>
<td>51.0</td>
<td>50.9</td>
</tr>
<tr>
<td>54.9</td>
<td>54.3</td>
<td>54.8</td>
<td>54.9</td>
</tr>
<tr>
<td>53.9</td>
<td>53.9</td>
<td>53.8</td>
<td>53.9</td>
</tr>
<tr>
<td>53.1</td>
<td>53.2</td>
<td>53.2</td>
<td>53.1</td>
</tr>
<tr>
<td>52.8</td>
<td>52.2</td>
<td>52.3</td>
<td>52.6</td>
</tr>
<tr>
<td>51.6</td>
<td>51.3</td>
<td>51.5</td>
<td>51.7</td>
</tr>
<tr>
<td>50.9</td>
<td>50.7</td>
<td>50.5</td>
<td>50.8</td>
</tr>
</tbody>
</table>
6/10 (12) kV

<table>
<thead>
<tr>
<th>Querschnitt (mm²)</th>
<th>0.0221</th>
<th>0.0366</th>
<th>0.0991</th>
<th>0.0754</th>
<th>0.0601</th>
<th>0.0723</th>
<th>0.0221</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstand) (Ohm/km)</td>
<td>3</td>
<td>0.33</td>
<td>0.40</td>
<td>0.10</td>
<td>0.11</td>
<td>0.12</td>
<td>0.02</td>
</tr>
<tr>
<td>berechneter W</td>
<td>21</td>
<td>6.66</td>
<td>4.65</td>
<td>0.57</td>
<td>0.59</td>
<td>0.70</td>
<td>0.15</td>
</tr>
<tr>
<td>berechneter W</td>
<td>35</td>
<td>13.8</td>
<td>14.4</td>
<td>2.54</td>
<td>2.57</td>
<td>3.58</td>
<td>0.58</td>
</tr>
<tr>
<td>berechneter W</td>
<td>44.0</td>
<td>90.9</td>
<td>72.2</td>
<td>0.55</td>
<td>0.56</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>berechneter W</td>
<td>10.3</td>
<td>133</td>
<td>136</td>
<td>0.55</td>
<td>0.56</td>
<td>1.07</td>
<td>1.07</td>
</tr>
<tr>
<td>berechneter W</td>
<td>466</td>
<td>90.9</td>
<td>98.5</td>
<td>0.55</td>
<td>0.56</td>
<td>1.28</td>
<td>1.28</td>
</tr>
<tr>
<td>berechneter W</td>
<td>222</td>
<td>299</td>
<td>370</td>
<td>0.55</td>
<td>0.56</td>
<td>1.32</td>
<td>1.32</td>
</tr>
<tr>
<td>berechneter W</td>
<td>1353</td>
<td>136</td>
<td>144.0</td>
<td>0.55</td>
<td>0.56</td>
<td>1.37</td>
<td>1.37</td>
</tr>
</tbody>
</table>

12/20 (24) kV

<table>
<thead>
<tr>
<th>Querschnitt (mm²)</th>
<th>0.0221</th>
<th>0.0366</th>
<th>0.0991</th>
<th>0.0754</th>
<th>0.0601</th>
<th>0.0723</th>
<th>0.0221</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstand) (Ohm/km)</td>
<td>2.8</td>
<td>1.7</td>
<td>1.54</td>
<td>0.41</td>
<td>0.44</td>
<td>0.45</td>
<td>0.03</td>
</tr>
<tr>
<td>berechneter W</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>berechneter W</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>berechneter W</td>
<td>9.9</td>
<td>9.9</td>
<td>9.9</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>berechneter W</td>
<td>19.9</td>
<td>19.9</td>
<td>19.9</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>berechneter W</td>
<td>29.9</td>
<td>29.9</td>
<td>29.9</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>berechneter W</td>
<td>39.9</td>
<td>39.9</td>
<td>39.9</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>berechneter W</td>
<td>49.9</td>
<td>49.9</td>
<td>49.9</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>

18/30 (36) kV

<table>
<thead>
<tr>
<th>Querschnitt (mm²)</th>
<th>0.0221</th>
<th>0.0366</th>
<th>0.0991</th>
<th>0.0754</th>
<th>0.0601</th>
<th>0.0723</th>
<th>0.0221</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstand) (Ohm/km)</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>berechneter W</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>berechneter W</td>
<td>9.9</td>
<td>9.9</td>
<td>9.9</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>berechneter W</td>
<td>19.9</td>
<td>19.9</td>
<td>19.9</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>berechneter W</td>
<td>29.9</td>
<td>29.9</td>
<td>29.9</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>berechneter W</td>
<td>39.9</td>
<td>39.9</td>
<td>39.9</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>berechneter W</td>
<td>49.9</td>
<td>49.9</td>
<td>49.9</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Verwendungsgrenzen

- 1. Verdichteter mehrdrähtiger Rundleiter
- 2. Exzidierte halbleitende Schicht
- 3. VPE - Isolierung
- 4. Exzidierte halbleitende Schicht (mit der Isolierung verbunden)
- 5. Halbleitendes, wasserdichtes Band
- 6. Kupferdrähte (spiralförmig mit zusätzlichem Kupferband angebracht)
- 7. Halbleitendes, wasserdichtes Band
- 8. PE - Aussenmantel

Spezifikation: VDE:0276 TEIL 620

- Maximaler zulässiger Strom:
 - 1.15
 - 0.80
 - 0.90
 - 1.25
 - 0.85
 - 0.8
 - 0.90

- 20°C:
 - 19.2
 - 34.7
 - 27.1
 - 13.1
 - 13.6

- 10°C:
 - 19.2
 - 34.7
 - 27.1
 - 13.1
 - 13.6

- 0°C:
 - 19.2
 - 34.7
 - 27.1
 - 13.1
 - 13.6
| Spezifikation: VDE:0276 TEIL 620 |

N2XS(FL)2Y
Einleiterkabel mit verdichtetem Kupfer - Rundleiter, VPE - isoliert, Kupferdrahtschirm, PE - Aussenmantel

Bedeutung der Induktions-Spannung
- Bedeutung der Induktions-Spannung (Liegend bei 70°C auf dem Boden)
- Bedeutung der Induktions-Spannung (Liegend bei 20°C in der Luft)
- Temperaturkurven (Liegend bei 70°C auf dem Boden)
- Temperaturkurven (Liegend bei 20°C in der Luft)
- Anpassung für Temperatur an 85°C · Beginn des Temperaturanstiegs
- Anpassung für Temperatur an 85°C · Beginn des Temperaturanstiegs
- Anpassung für Temperatur an 85°C · Temperaturanstieg

Leitungsleitung
- Leitungen und Anpassung für Temperatur an 85°C · Temperaturanstieg
- Leitungen und Anpassung für Temperatur an 85°C · Temperaturanstieg
- Leitungen und Anpassung für Temperatur an 85°C · Temperaturanstieg

Kabelleitung
- Kabelleitung und Anpassung für Temperatur an 85°C · Temperaturanstieg
- Kabelleitung und Anpassung für Temperatur an 85°C · Temperaturanstieg
- Kabelleitung und Anpassung für Temperatur an 85°C · Temperaturanstieg

Verlegung
- Verlegung und Anpassung für Temperatur an 85°C · Temperaturanstieg
- Verlegung und Anpassung für Temperatur an 85°C · Temperaturanstieg
- Verlegung und Anpassung für Temperatur an 85°C · Temperaturanstieg

Halbleitend, wasserdichtes Band
- Halbleitend, wasserdichtes Band auf der berechneten Kapazität und an der inneren Leitschicht

Berechnete induktive Reaktanz
- Berechnete induktive Reaktanz (basierend auf berechnete Nennwanddicke der Isolierung)

Berechnete induzierte Spannung
- Berechnete induzierte Spannung (Abstand) (mV/A/km)

Flachanordnung (Flache, F1, F2, Flache, F1, F2)
- Flachanordnung (A)

Ubertragende Leistung in (mittlere, MA, Leistung)
- Ubertragende Leistung in (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung in (mittlere, MA, Leistung)
- Ubertragende Leistung in (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung in (mittlere, MA, Leistung)
- Ubertragende Leistung in (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung in (mittlere, MA, Leistung)
- Ubertragende Leistung in (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung in (mittlere, MA, Leistung)
- Ubertragende Leistung in (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung in (mittlere, MA, Leistung)
- Ubertragende Leistung in (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung in (mittlere, MA, Leistung)
- Ubertragende Leistung in (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung in (mittlere, MA, Leistung)
- Ubertragende Leistung in (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung in (mittlere, MA, Leistung)
- Ubertragende Leistung in (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung in (mittlere, MA, Leistung)
- Ubertragende Leistung in (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung in (mittlere, MA, Leistung)
- Ubertragende Leistung in (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung in (mittlere, MA, Leistung)
- Ubertragende Leistung in (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung in (mittlere, MA, Leistung)
- Ubertragende Leistung in (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung in (mittlere, MA, Leistung)
- Ubertragende Leistung in (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung in (mittlere, MA, Leistung)
- Ubertragende Leistung in (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung in (mittlere, MA, Leistung)
- Ubertragende Leistung in (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung in (mittlere, MA, Leistung)
- Ubertragende Leistung in (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung in (mittlere, MA, Leistung)
- Ubertragende Leistung in (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung in (mittlere, MA, Leistung)
- Ubertragende Leistung in (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung in (mittlere, MA, Leistung)
- Ubertragende Leistung in (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung in (mittlere, MA, Leistung)
- Ubertragende Leistung in (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)

Ubertragende Leistung an (mittlere, MA, Leistung)
- Ubertragende Leistung an (mittlere, MA, Leistung)
Kabeltyp: NA2XS(FL)2Y

6/10 (12) kV

<table>
<thead>
<tr>
<th>Querschnitt (mm²)</th>
<th>0.0291</th>
<th>0.0778</th>
<th>0.0469</th>
<th>0.100</th>
<th>0.125</th>
<th>0.100</th>
<th>0.206</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kabelgewicht (kg/km)</td>
<td>35</td>
<td>35</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Bereknhelter Leiterwechselwiderstand (Ω/km)</td>
<td>0.95</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>3.8</td>
<td>2.3</td>
<td>1.8</td>
</tr>
<tr>
<td>Berechnette Induktivität (H/km)</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Belastbarkeit an Luft, MVA, fü ü 50 Hz</td>
<td>4.9</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>7.2</td>
<td>5.0</td>
<td>4.9</td>
</tr>
<tr>
<td>Mindestbiegeradius vor die Verlegung (°C)</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

12/20 (24) kV

<table>
<thead>
<tr>
<th>Querschnitt (mm²)</th>
<th>0.0291</th>
<th>0.0778</th>
<th>0.0469</th>
<th>0.100</th>
<th>0.125</th>
<th>0.100</th>
<th>0.206</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kabelgewicht (kg/km)</td>
<td>35</td>
<td>35</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Bereknhelter Leiterwechselwiderstand (Ω/km)</td>
<td>0.95</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>3.8</td>
<td>2.3</td>
<td>1.8</td>
</tr>
<tr>
<td>Berechnette Induktivität (H/km)</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Belastbarkeit an Luft, MVA, fü ü 50 Hz</td>
<td>4.9</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>7.2</td>
<td>5.0</td>
<td>4.9</td>
</tr>
<tr>
<td>Mindestbiegeradius vor die Verlegung (°C)</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

18/30 (36) kV

<table>
<thead>
<tr>
<th>Querschnitt (mm²)</th>
<th>0.0291</th>
<th>0.0778</th>
<th>0.0469</th>
<th>0.100</th>
<th>0.125</th>
<th>0.100</th>
<th>0.206</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kabelgewicht (kg/km)</td>
<td>35</td>
<td>35</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Bereknhelter Leiterwechselwiderstand (Ω/km)</td>
<td>0.95</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>3.8</td>
<td>2.3</td>
<td>1.8</td>
</tr>
<tr>
<td>Berechnette Induktivität (H/km)</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Belastbarkeit an Luft, MVA, fü ü 50 Hz</td>
<td>4.9</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>7.2</td>
<td>5.0</td>
<td>4.9</td>
</tr>
<tr>
<td>Mindestbiegeradius vor die Verlegung (°C)</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

1. Verdichteter mehrdärtiger Rundleiter
2. Exztrudierte halbleitende Schicht
3. VPE - Isolierung
4. Exztrudierte halbleitende Schicht (mit der Isolierung verbunden)
5. Halbleitendes, wasserdichtes Band
6. Kupferdrähte (spiralförmig mit zusätzlichem Kupferband angebracht)
7. Halbleitendes, wasserdichtes Band
8. PE - Aussenmantel
NA2XS(FL)2Y

Einleiterkabel mit verdichtetem Aluminum - Rundleiter, VPE - isoliert, Kupferdrahtschirm, PE - Aussenmantel

<table>
<thead>
<tr>
<th>Kabelgesamtdurchmesser (mm)</th>
<th>2.3</th>
<th>1.3</th>
<th>2.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Leitergleichstrom (A) bei 20°C</td>
<td>0.82</td>
<td>0.641</td>
<td>0.0291</td>
</tr>
</tbody>
</table>

Legung berührend im lichten Raum

| Spezifikation: VDE:0276 TEIL 620 |
|-----------------------------------|---|
| Luft, Flachanordnung | 5.55 |

Halbleitendes, wasserdichtes Band

| Kupferdrahtschirm, PE | 17.8 |

Reaktive Verluste aufgrund von Luft, Flachanordnung

| 0.38+j*0.04 |

Zulässiger Schirmkurzschlussstrom

| 0.85+j*0.18 |

Luft, Flachanordnung

| 5.55 |

Mediumtiedeungsmasse vor Überstromschutz (m³/m³)

| 0.85 |

Mediumleitfähigkeit (m³/m³)

| 0.85 |

Mediumleitfähigkeit (m³/m³)

| 0.85 |